Boneless-III

Architecture Reference Manual

Notice:

This document is a work in progress and subject to change without warning. However, the parts that are *especially* subject to change carry a notice similar to this one.

Contents

Та	Table of Contents4			
1	Intr	oduction	5	
2 Guide to Instruction Set		de to Instruction Set	6	
	2.1	Operation Syntax	6	
		2.1.1 Undefined and Unpredictable Behavior	6	
		2.1.2 Reference Operators	6	
		2.1.3 Arithmetic Operators	7	
		2.1.4 Logical Operators	$\overline{7}$	
		2.1.5 Functions	7	
	2.2	Registers	8	
		2.2.1 Program Counter	8	
		2.2.2 General Purpose Registers and the Window	8	
		2.2.3 Result Flags	9	
		2.2.4 Extended Immediate	9	
3	Oui	ck Reference	10	
Ŭ	31	ALU Instructions	10	
	0.1	311 Arithmetic	10	
		312 Logic	10	
		3.1.3 Shift & Rotate	10	
	3.2	Data Transfer Instructions	11	
		3.2.1 General Purpose Registers	11	
		3.2.2 Window Register	11	
		3.2.3 Memory	11	
		3.2.4 External Bus	11	
	3.3	Control Transfer Instructions	12	
		3.3.1 Unconditional	12	
		3.3.2 Conditional on Comparison	12	
		3.3.3 Conditional on Result	12	
		3.3.4 Conditional on Flags	12	
1	List	of Instructions	12	
4	<u>1150</u>	ADC (Add Begister with Carry)	1 <i>1</i>	
	4.1 1 2	ADCI (Add Immediate with Carry)	15	
	4.3	ADD (Add Begister)	16	
	ч.9 Д Д	ADDI (Add Immediate)	17	
	4.5	AD IW (Adjust Window Address)	18	
	4.6	AND (Bitwise AND with Begister)	19	
	4.7	ANDI (Bitwise AND with Immediate)	$\frac{10}{20}$	
	4.8	BC (Branch if Carry)	$\frac{20}{21}$	
	4.9	BC0 (Branch if Carry is 0)	22	
	4 10	BC1 (Branch if Carry is 1)	$\frac{22}{23}$	
	4 11	BEQ (Branch if Equal)	$\frac{-9}{24}$	
	4.12	BGES (Branch if Greater or Equal, Signed)	$\frac{21}{25}$	
	4.13	BGEU (Branch if Greater or Equal, Unsigned)	$\frac{-5}{26}$	

4.14	BGTS (Branch if Greater Than, Signed)
4.15	BGTU (Branch if Greater Than, Unsigned)
4.16	BLES (Branch if Less or Equal, Signed)
4.17	BLEU (Branch if Less or Equal, Unsigned)
4.18	BLTS (Branch if Less Than, Signed)
4.19	BLTU (Branch if Less Than, Unsigned)
4.20	BNC (Branch if Not Carry)
4.21	BNE (Branch if Not Equal)
4.22	BNS (Branch if Not Sign)
4.23	BNV (Branch if Not Overflow)
4.24	BNZ (Branch if Not Zero)
4.25	BS (Branch if Sign)
4.26	BS0 (Branch if Sign is 0)
4.27	BS1 (Branch if Sign is 1)
4.28	BV (Branch if Overflow)
4.29	BV0 (Branch if Overflow is 0)
4 30	BV1 (Branch if Overflow is 1) 43
4.31	BZ (Branch if Zero) 44
4.32	BZ0 (Branch if Zero is 0) 45
4 33	BZ1 (Branch if Zero is 1) 46
4.00	CMP (Compare to Bogister)
4.04	CMPI (Compare to Immediate)
4.00	EXTI (Extend Immediate) 40
4.30	$EATI (Extend minediate) \dots \dots$
4.01	J(J(I)) = J(J(
4.00	JAL (Jump and Link)
4.39	JR (Jump to Register)
4.40	JRAL (Jump to Register and Link) $\ldots \ldots \ldots$
4.41	$JS1 (Jump through Switch Table) \dots JS1 (Jump through Switch Table) \dots JS1 (Jump through Switch Table) JS1 (Jump through Switch Table) \dots JS1 ($
4.42	JV1 (Jump through Virtual Table)
4.43	LD (Load)
4.44	LDR (Load PC-relative)
4.45	LDW (Adjust and Load Window Address)
4.46	$LDX (Load External) \dots 59$
4.47	LDXA (Load External Absolute)
4.48	MOV (Move)
4.49	MOVI (Move Immediate)
4.50	MOVR (Move PC-relative Address)
4.51	NOP (No Operation)
4.52	NOT (Logical NOT) 65
4.53	OR (Bitwise OR with Register)
4.54	ORI (Bitwise OR with Immediate)
4.55	ROL (Rotate Left)
4.56	ROLI (Rotate Left Immediate)
4.57	RORI (Rotate Right Immediate)
4.58	SBC (Subtract Register with Carry)
4.59	SBCI (Subtract Immediate with Carry)
4.60	SLL (Shift Left Logical)
4.61	SLLI (Shift Left Logical Immediate)

	4.62 SRA (Shift Right Arithmetical)	75
	4.63 SRAI (Shift Right Arithmetical Immediate)	76
	4.64 SRL (Shift Right Logical)	77
	4.65 SRLI (Shift Right Logical Immediate)	78
	4.66 ST (Store)	79
	4.67 STR (Store PC-relative)	80
	4.68 STW (Store to Window Address)	81
	4.69 STX (Store External)	82
	4.70 STXA (Store External Absolute)	83
	4.71 SUB (Subtract Register)	84
	4.72 SUBI (Subtract Immediate)	85
	4.73 XCHG (Exchange Registers)	86
	4.74 XCHW (Exchange Window Address)	87
	4.75 XOR (Bitwise XOR with Register)	88
	4.76 XORI (Bitwise XOR with Immediate)	89
5	List of Assembly Directives	90
6	Function Calling Sequence	91

1 Introduction

TBD

2 Guide to Instruction Set

This guide first explains how to interpret the notation used in this document. After, it explains the available registers and their behavior.

2.1 Operation Syntax

This document uses the following syntax and operators to describe the operation of each instruction.

2.1.1 Undefined and Unpredictable Behavior

To describe the boundaries of legal program behavior, this document uses the words **UNDEFINED** and **UNPREDICTABLE**.

When execution encounters **UNPREDICTABLE** behavior, the implementation may perform any behavior, including but not limited to hanging and failing to continue execution. The resulting behavior may be different between executions even under the same circumstances.

Certain operations, including any operation with an **UNDEFINED** input, will produce an **UNDEFINED** result. Reading a register whose value is currently **UNDEFINED** may produce any bit pattern. Multiple consecutive reads of such a register may also produce different bit patterns on each read.

2.1.2 Reference Operators

The following operators reference parts of variables or the attached memory.

- opB ← opA: Store opA into opB. If necessary, opA is implicitly zero-extended or truncated to match the length of opB.
- op[b:a]: Reference bits a through b, inclusive, of op. If a is greater than b, the resulting length is zero.
- mem[addr]: Reference memory word at word address addr. The address is implicitly ANDed with **0xFFFF**.
- ext[addr]: Reference external bus word at word address addr. The address is implicitly ANDed with **0xFFFF**.
- {opA, opB}: Concatenate the bits of opA and opB. opA makes the high-order bits of the result and opB makes the low-order bits.
- opB{opA}: Construct the result by repeating opA opB times.

2.1.3 Arithmetic Operators

The arithmetic operators perform arithmetic or bitwise logic between the operands. All operands to these operators are unsigned. If one operand is shorter than the other, it is zero-extended to match the length of the other.

- opA + opB: Add opA and opB. The high bit of the result is a carry bit.
- opA and opB: Perform a bitwise AND between opA and opB.
- opA or opB: Perform a bitwise OR between opA and opB.
- opA xor opB: Perform a bitwise XOR between opA and opB.
- **not op**: Perform a bitwise negation of **op**.

2.1.4 Logical Operators

The logical operators yield 1 if the condition is satisfied and 0 if it is not. If one operand is shorter than the other, it is zero-extended to match the length of the other.

- opA = opB: Satisfied if opA equals opB.
- opA <> opB: Satisfied if opA does not equal opB.

2.1.5 Functions

- **sign_extend_16(op)**: Perform a two's complement sign extension of **op** by replicating the high bit until the total length is 16 bits.
- decode_imm_al(op): Calculate the immediate value of an arithmetic or logical instruction according to the following table.

ор	Result
0	0x0000
1	0x0001
2	0x8000
3	TBD
4	0x00FF
5	0xFF00
6	0x7FFF
7	0xFFFF

• decode_imm_sr(op): Calculate the immediate value of a shift or rotate instruction according to the following table.

ор	Result
0	8
1	1
2	2
3	3
4	4
5	5
6	6
7	7

2.2 Registers

The CPU contains a number of registers that are used to store data, computation results, and system state. The registers are operated on as described by the operation of each instruction. If a register is not modified by an instruction, its value is preserved, except where noted in this register definition.

2.2.1 Program Counter

The CPU features a 16-bit program counter named PC. All instructions are 16 bit, so all values of PC are valid.

Unless otherwise specified by an instruction's operation, $PC \leftarrow PC+1$ after each instruction.

The behavior of $PC \leftarrow op$ defines that op is truncated to 16 bits to fit PC. Thus, adjusting PC is defined to wrap.

At reset, $PC \leftarrow 0x0000$, but this value can be changed by the implementation.

2.2.2 General Purpose Registers and the Window

The CPU has eight 16-bit general purpose (GP) integer registers, named **R0** through **R7**. Each register can hold any 16-bit value. Most instructions interpret the values as unsigned integers, but some treat values as two's complement signed integers (denoted by a "signed" operation).

The GP registers are fully interchangeable and any register can be used as source and/or destination for any instruction which uses a GP register. The register file is windowed: register values are stored in main memory, starting at the window address.

The current window address is stored in a 16-bit register named W. Its value can only be set and/or read by the four window instructions: ADJW, LDW, STW, and XCHW. Setting W logically changes the values of all GP registers simultaneously, enabling fast procedure calls and task switches.

W is added to the number of a GP register to calculate the address where that register is stored. For example, the operation mem[W+3] \leftarrow mem[W+1] sets R3 equal to R1.

The behavior of $W \leftarrow op$ and mem[op] defines that op is truncated to 16 bits to fit W. Thus, adjusting W and calculating GP register addresses are defined to wrap.

At reset, $W \leftarrow 0xFFF8$, but this value can be changed by the implementation.

2.2.3 Result Flags

The CPU has four result flags to describe the result of ALU computations. The flags are updated by most ALU instructions. The CPU can act on the result of the flags by executing a conditional branch which transfers control if the flags are in the desired state. The exact contents of each flag after an instruction executes are explained in the instruction's operation, but the general purpose and behavior of each flag are explained below.

The Z (Zero) flag is set to 1 if the low 16 bits of the result of the operation were zero, and 0 otherwise.

The S (Sign) flag is set to the 15th bit of the result of the operation.

The C (Carry) flag is set to the 16th bit of the result of an arithmetic operation, or **UNDEFINED** if the operation was logical.

The V (oVerflow) flag is set if the arithmetic operation encountered two's complement overflow, or **UNDEFINED** if the operation was logical.

2.2.4 Extended Immediate

The CPU has two registers that help build a 16-bit immediate value.

The **EXTI** instruction sets the **ext13** register to its 13-bit immediate and the **has_ext13** register to 1.

Generally, if an instruction can use an immediate and has_ext13 is 1, the instruction will use ext13 as the high 13 bits of the the immediate value and take the low 3 bits from the instruction itself. The exact behavior of an instruction with regards to has_ext13 and ext13 is specified in the instruction's operation.

Except for after EXTI, ext13 \leftarrow UNDEFINED and has_ext13 \leftarrow 0 after every instruction, even those which do not use either register.

3 Quick Reference

This chapter summarizes the Boneless instruction set. Instructions are grouped according to their function.

3.1 ALU Instructions

3.1.1 Arithmetic

Mnemonic	Function
ADD Rd, Ra, Rb	Add register to register / immediate
ADDI Rd, Ra, imm	Add register to register/inimediate.
ADC Rd, Ra, Rb	Add register to register/immediate, including carry input.
ADCI Rd, Ra, imm	For multi-word addition.
SUB Rd, Ra, Rb	Subtract register (immediate from register
SUBI Rd, Ra, imm	Subtract register/inimediate from register.
SBC Rd, Ra, Rb	Subtract register/immediate from register, including carry
<pre>SBCI Rd, Ra, imm</pre>	input. For multi-word subtraction.
CMP Ra, Rb	Compare register with register/immediate, then set flags
CMPI Ra, imm	according to result.

3.1.2 Logic

Mnemonic	Function	
AND Rd, Ra, Rb	Bitwice AND between register and register immediate	
ANDI Rd, Ra, imm	Ditwise AND between register and register/inimediate.	
OR Rd, Ra, Rb	Bitwice OR between register and register /immediate	
<mark>ORI</mark> Rd, Ra, imm	bitwise On between register and register/infinediate.	
XOR Rd, Ra, Rb	Bitwice YOB between register and register immediate	
XORI Rd, Ra, imm	Ditwise XOR between register and register/inimediate.	
NOT Rd, Ra	Bitwise NOT between register and register.	

3.1.3 Shift & Rotate

Mnemonic	Function
SLL Rd, Ra, Rb	Chift perister left by perister /immediate amount
SLLI Rd, Ra, imm	Sint register left by register/inmediate amount.
SRL Rd, Ra, Rb	Shift register right by register/immediate amount, with zero
SRLI Rd, Ra, imm	extension.
SRA Rd, Ra, Rb	Shift register right by register/immediate amount, with sign
SRAI Rd, Ra, imm	extension.
ROL Rd, Ra, Rb	Potate register left by register (immediate amount
ROLI Rd, Ra, imm	notate register ferr by register/infinediate amount.
RORI Rd, Ra, imm	Rotate register right by immediate amount.

3.2 Data Transfer Instructions

3.2.1 General Purpose Registers

Mnemonic	Function
MOV Rd, Rs	Move register / immediate into register
MOVI Rd, imm	Move register/inimediate into register.
MOVR Rd, off	Move PC-relative offset into register.
XCHG Ra, Rb	Exchange values of two registers.
NOP	Do nothing.
EVTT imm	Extend immediate of following instruction. Automatically placed
	by assembler; should not be manually written.

3.2.2 Window Register

Mnemonic	Function
ADJW imm	Add signed immediate to W.
LDW Rd, imm	Add signed immediate to W, then store previous W to register.
STW Rb	Move register into W.
XCHW Rd, Rb	Move Rb into W , then store previous W to Rd .

3.2.3 Memory

Mnemonic	Function
LD Rd, Ra, off	Load Rd from memory at Ra plus offset.
LDR Rd, Ra, off	Load Rd from memory at Ra plus PC-relative offset.
ST Rs, Ra, off	Store Rs to memory at Ra plus offset.
STR Rs, Ra, off	Store Rs to memory at Ra plus PC-relative offset.

3.2.4 External Bus

Mnemonic	Function
LDX Rd, Ra, off	Load Rd from external bus at Ra plus offset.
LDXA Rd, off	Load Rd from external bus at absolute offset.
STX Rs, Ra, off	Store Rs to external bus at Ra plus offset.
STXA Rs, off	Store Rs to external bus at absolute offset.

3.3 Control Transfer Instructions

3.3.1 Unconditional

Mnemonic	Function
J label	Jump to label.
1AI Pd labol	Store address of next instruction into register, then jump to
JAL RU, IADEI	label . For calling subroutines.
JR Rs, off	Jump to Rs plus PC-relative offset.
JRAL Rd, Rb	Store address of next instruction into Rd, then jump to Rb.
JST Rs, off	Jump through entry Rs of switch table at PC-relative offset.
JVT Rd, off	Jump through entry off of virtual table at Rd .

3.3.2 Conditional on Comparison

These instructions branch to label after a CMP Ra, Rb instruction if the given condition is met when the operands are treated as numbers with the given signedness.

Condition	Signed Comparison	Unsigned Comparison
Ra = Rb	BEQ label	BEQ label
Ra > Rb	BGTS label	BGTU label
Ra >= Rb	BGES label	BGEU label
Ra <= Rb	BLES label	BLEU label
Ra < Rb	BLTS label	BLTU label
Ra <> Rb	BNE label	BNE label

3.3.3 Conditional on Result

These instructions branch to **label** if the last arithmetic or logical operation met the given condition.

Condition	is True	is False
Result is equal to zero	BZ label	BNZ label
Result is negative	BS label	BNS label
Operation encountered unsigned overflow	BC label	BNC label
Operation encountered signed overflow	BV label	BNV label

3.3.4 Conditional on Flags

These instructions branch to **label** if the given flag is in the given state.

Flag	is Set	is Clear
Zero	BZ1 label	BZ0 label
Sign	BS1 label	BS0 label
Carry	BC1 label	BC0 label
oVerflow	BV1 label	BV0 label

4 List of Instructions

The following pages provide a detailed description of instructions, arranged in alphabetical order.

Executing any instruction with an encoding not present on the following pages has **UNPREDICTABLE** behavior.

4.1 ADC

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ADC	00010						Rd			Ra		0	1		Rb	

Assembly:

ADC Rd, Ra, Rb

Purpose:

To add 16-bit integers in registers, with carry input.

Restrictions:

None.

Operation:

 $opA \leftarrow mem[W+Ra]$ $opB \leftarrow mem[W+Rb]$ $res \leftarrow opA + opB + C$ $mem[W+Rd] \leftarrow res$ $Z \leftarrow res[15:0] = 0$ $S \leftarrow res[15]$ $C \leftarrow res[16]$ $V \leftarrow (opA[15] = opB[15])$ and (opA[15] <> res[15])

Remarks:

A 32-bit addition with both operands in registers can be performed as follows:

; Perform {R1, R0} \leftarrow {R3, R2} + {R5, R4} ADD R0, R2, R4 ADC R1, R3, R5

4.2 ADCI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ADCI	00011						Rd			Ra		0	1	iı	nm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
ADCI	00011						Rd			Ra		0	1	iı	mm	3

Assembly:

ADCI Rd, Ra, imm

Purpose:

To add a constant to a 16-bit integer in a register, with carry input.

Restrictions:

None.

Operation:

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA + opB + C

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = opB[15]) and (opA[15] <> res[15])
```

Remarks:

A 32-bit addition with a register and an immediate operand can be performed as follows:

; Perform {R1, R0} ← {R3, R2} + 0x40001 ADDI R0, R2, 1 ADCI R1, R3, 4

4.3 ADD

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ADD	00010						Rd			Ra		0	0		Rb	

Assembly:

ADD Rd, Ra, Rb

Purpose:

To add 16-bit integers in registers.

Restrictions:

None.

Operation:

 $opA \leftarrow mem[W+Ra]$ $opB \leftarrow mem[W+Rb]$ $res \leftarrow opA + opB$ $mem[W+Rd] \leftarrow res$ $Z \leftarrow res[15:0] = 0$ $S \leftarrow res[15]$ $C \leftarrow res[16]$ $V \leftarrow (opA[15] = opB[15])$ and (opA[15] <> res[15])

4.4 ADDI

Encoding (short form):

	F	Е	D	С	В	A	9	8	7	6	5	4	3	2	1	0
ADDI	00011						Rd			Ra		0	0	i	mm	3

Encoding (long form):

	F	Е	D	F E D C B					7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
ADDI	00011						Rd			Ra		0	0	iı	mm	3

Assembly:

ADDI Rd, Ra, imm

Purpose:

To add a constant to a 16-bit integer in a register.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA + opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = opB[15]) and (opA[15] \diamond res[15])
```

4.5 ADJW

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ADJW	10100						000			010			i	mm	5	

Encoding (long form):

	F	Е	D	С	В	А	9	5	4	3	2	1	0		
EXTI		110						ех	t13						
ADJW	10100						000		010			iı	mm	5	

Assembly:

ADJW imm

Purpose:

To increase or decrease the address of the register window.

Restrictions:

If imm contains a value that is not a multiple of 8, the behavior is **UNPREDICTABLE**. If the long form is used, and imm5[4:3] are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then imm \leftarrow {ext13, imm5[2:0]}
else imm \leftarrow sign_extend_16(imm5)
W \leftarrow W + imm
```

Remarks:

This instruction may be used in a function prologue or epilogue.

Notice:

The interpretation of the immediate field of this instruction is not final.

4.6 AND

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
AND		0	0000	0			Rd			Ra		0	0		Rb	

Assembly:

AND Rd, Ra, Rb

Purpose:

To perform bitwise AND between 16-bit integers in registers.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow opA and opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.7 ANDI

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ANDI		0	0000	1			Rd			Ra		0	0	iı	mm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
ANDI		0	0000	1			Rd			Ra		0	0	iı	mm	3

Assembly:

ANDI Rd, Ra, imm

Purpose:

To perform bitwise AND between a 16-bit integer in a register and a constant.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA and opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.8 BC

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BC		10	11			101	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BC		10	11			101	10					of	f8			

Assembly:

BC label

Purpose:

To transfer control if the last arithmetic operation resulted in unsigned overflow.

Restrictions:

If the long form is used, and <code>off8[7:3]</code> are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (C)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BC1**.

4.9 BC0

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BC0		10	11			00	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BC0		10	11			00	10					of	f8			

Assembly:

BC0 label

Purpose:

To transfer control if the carry (C) flag is 0.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not C)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.10 BC1

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BC1		10	11			10	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BC1		10	11			101	10					of	f8			

Assembly:

BC1 label

Purpose:

To transfer control if the carry (C) flag is 1.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (C)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.11 BEQ

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BEQ		10	11			100	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BEQ		110 1011				100	00					of	f8			

Assembly:

BEQ label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is equal to Rb.

Restrictions:

If the long form is used, and <code>off8[7:3]</code> are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BZ1**.

4.12 BGES

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BGES		10	11			010	01					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BGES		10	11			010	01					of	f8			

Assembly:

BGES label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than or equal to Rb when interpreted as signed integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not (S xor V))
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BGEU		10	11			10	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BGEU		10	11			101	10					of	f8			

Assembly:

BGEU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than or equal to Rb when interpreted as unsigned integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (C)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BC1**.

4.14 BGTS

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BGTS		10	11			01	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110	1						ех	t13						
BGTS		10	11			01	10					of	f8			

Assembly:

BGTS label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than Rb when interpreted as signed integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not ((S xor V) or Z))
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.15 BGTU

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BGTU		10	11			010	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						1
BGTU		10	11			010	00					of	f8			

Assembly:

BGTU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than Rb when interpreted as unsigned integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not ((not C) or Z))
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.16 BLES

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BLES		10	11			111	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BLES		10	11			111	10					of	f8			

Assembly:

BLES label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than or equal to Rb when interpreted as signed integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if ((S xor V) or Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.17 BLEU

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BLEU		10	11			110	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BLEU		10	11			110	00					of	f8			

Assembly:

BLEU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than or equal to Rb when interpreted as unsigned integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if ((not C) or Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.18 BLTS

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BLTS		10	11			110	01					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BLTS		10	11			110	01					of	f8			

Assembly:

BLTS label

Purpose:

To transfer control after a CMP $Ra,\ Rb$ instruction if Ra is less than Rb when interpreted as signed integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (S xor V)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.19 BLTU

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BLTU	1011					00	10					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BLTU		10	11			00	10					of	f8			

Assembly:

BLTU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than Rb when interpreted as unsigned integers.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not C)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as BCO.

4.20 BNC

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BNC		10	11		0010							of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110					1		ех	t13						1
BNC	1011					00	10					of	f8			

Assembly:

BNC label

Purpose:

To transfer control if the last arithmetic operation did not result in unsigned overflow.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not C)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as BCO.

4.21 BNE

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BNE	1011					000	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BNE		10	11			000	00					of	f8			

Assembly:

BNE label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is not equal to Rb.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BZO**.

4.22 BNS

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BNS		10	11		0001							of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BNS	1011					000	01					of	f8			

Assembly:

BNS label

Purpose:

To transfer control if the last arithmetic operation did not produce a negative result.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not S)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BS0**.
4.23 BNV

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BNV		10	11			00	11					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BNV	1011					00	11					of	f8			

Assembly:

BNV label

Purpose:

To transfer control if the last arithmetic operation did not result in signed overflow.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not V)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BV0**.

4.24 BNZ

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BNZ		10	11			000	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	xt13						
BNZ		10	11			000	00					of	f8			

Assembly:

BNZ label

Purpose:

To transfer control if the last operation produced a result not equal to zero.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BZO**.

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BS		10	11			100	01					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BS	1011					100	01					of	f8			

Assembly:

BS label

Purpose:

To transfer control if the last arithmetic operation produced a negative result.

Restrictions:

If the long form is used, and <code>off8[7:3]</code> are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (S)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BS1**.

4.26 BS0

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BS0		10	11			000	0 1					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI	110 1011								ех	t13						
BS0	1011					000	01					of	f8			

Assembly:

BS0 label

Purpose:

To transfer control if the sign (S) flag is 0.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not S)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.27 BS1

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BS1		10	11			100	01					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BS1	1011					100	01					of	f8			

Assembly:

BS1 label

Purpose:

To transfer control if the sign (S) flag is 1.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (S)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.28 BV

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BV		10	11			101	11					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BV		10	11			101	11					of	f8			

Assembly:

BV label

Purpose:

To transfer control if the last arithmetic operation resulted in signed overflow.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (V)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BV1**.

4.29 BV0

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BV0		10	11			00	11					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	t13						
BV0		10	11			00	11					of	f8			

Assembly:

BV0 label

Purpose:

To transfer control if the overflow (V) flag is 0.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not V)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.30 BV1

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BV1		10	11			101	11					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BV1		10	11			101	11					of	f8			

Assembly:

BV1 label

Purpose:

To transfer control if the overflow (V) flag is 1.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (V)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.31 BZ

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ΒZ		10	11			100	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110			ext13											
ΒZ		10	11			100	00					of	f8			

Assembly:

BZ label

Purpose:

To transfer control if the last operation produced a result equal to zero.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Remarks:

This instruction has the same encoding as **BZ1**.

4.32 BZ0

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BZ0		10	11			000	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BZ0		10	11			000	00					of	f8			

Assembly:

BZ0 label

Purpose:

To transfer control if the zero (Z) flag is 0.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (not Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

4.33 BZ1

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
BZ1		10	11			100	00					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
BZ1		10	11			100	00					of	f8			

Assembly:

BZ1 label

Purpose:

To transfer control if the zero (Z) flag is 1.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
if (Z)
then PC \leftarrow PC + 1 + off
else PC \leftarrow PC + 1
```

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
CMP	00000					(000			Ra		1	1		Rb	

Assembly:

CMP Ra, Rb

Purpose:

To compare 16-bit two's complement integers in registers.

Restrictions:

None.

Operation:

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow opA + not opB + 1

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = not opB[15]) and (opA[15] <> res[15])
```

Remarks:

This instruction behaves identically to SUB, with the exception that it discards the computed value.

4.35 CMPI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
CMPI	00001						000			Ra		1	1	iı	mm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI									ех	xt13						
CMPI	00001						000			Ra		1	1	iı	mm	3

Assembly:

CMPI Ra, imm

Purpose:

To compare a two's complement constant to a 16-bit two's complement integer in a register.

Restrictions:

None.

Operation:

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA + not opB + 1

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = not opB[15]) and (opA[15] <> res[15])
```

Remarks:

This instruction behaves identically to **SUBI**, with the exception that it discards the computed value.

4.36 EXTI

Encoding:

Assembly:

EXTI imm

Purpose:

To extend the range of immediate in the following instruction.

Restrictions:

None.

Operation:

 $\begin{array}{l} \texttt{ext13} \ \leftarrow \ \texttt{imm13} \\ \texttt{has_ext13} \ \leftarrow \ \texttt{1} \end{array}$

Remarks:

This instruction is automatically emitted by the assembler while translating other instructions. As it changes both the meaning of and the constraints placed on the immediate field in the following instruction, placing it manually may lead to unexpected results.

4.37 J

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
J		10	11			111	11					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	xt13						
J	1011					111	11					of	f8			

Assembly:

J label

Purpose:

To unconditionally transfer control.

Restrictions:

If the long form is used, and <code>off8[7:3]</code> are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
PC \leftarrow PC + 1 + off

4.38 JAL

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
JAL		1	010	1			Rd					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
JAL	10101						Rd					of	f8			

Assembly:

JAL Rd, label

Purpose:

To transfer control to a subroutine.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
mem[W+Rd] \leftarrow PC + 1
PC \leftarrow PC + 1 + off
```

4.39 JR

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
JR		1	010	0			Rs			100				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
JR	10100						Rs			100				off5		

Assembly:

JR Rs, off

Purpose:

To transfer control to a variable absolute address contained in a register, with a constant offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

if (has_ext13)
then off ~ {ext13, off5[2:0]}
else off ~ sign_extend_16(off5)
PC ~ mem[W+Ra] + off

4.40 JRAL

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
JRAL	10100						Rd			101		0	0		Rb	

Assembly:

JRAL Rd, Rb

Purpose:

To transfer control to a subroutine whose variable absolute address is contained in a register.

Restrictions:

None.

Operation:

4.41 JST

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
JST		1	010	0			Rs			111				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
JST	10100						Rs			111				off5		

Assembly:

JST Rs, off

Purpose:

To transfer control to an address contained in a jump table at a variable offset, where the address is relative to the location of the table.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off ~ {ext13, off5[2:0]}
else off ~ sign_extend_16(off5)
table ~ PC + 1 + off
entry ~ mem[W+Rs]
addr ~ mem[table + entry]
PC ~ table + addr
```

4.42 JVT

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
JVT		1	010	0			Rs			110				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
JVT		1	010	0			Rs			110				off5		

Assembly:

JVT Rs, off

Purpose:

To transfer control to an address contained in a jump table at a constant offset, where the address is relative to the location of the table.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off ~ {ext13, off5[2:0]}
else off ~ sign_extend_16(off5)
table ~ mem[W+Rs]
addr ~ mem[table + off]
PC ~ table + addr
```

4.43 LD

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
LD		0)100	01000						Ra				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
LD		0)100	0			Rd			Ra				off5		

Assembly:

LD Rd, Ra, off

Purpose:

To load a word from memory at a variable address, with a constant offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off5[2:0]}
else off \leftarrow sign_extend_16(off5)
addr \leftarrow mem[W+Ra] + off
data \leftarrow mem[addr]
mem[W+Rd] \leftarrow data
```

4.44 LDR

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
LDR		0)100	1			Rd			Ra				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI	110								ех	ct13						
LDR		0)100	1			Rd			Ra				off5		

Assembly:

LDR Rd, Ra, off

Purpose:

To load a word from memory at a constant PC-relative address, with a variable offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off5[2:0]}
else off \leftarrow sign_extend_16(off5)
addr \leftarrow PC + 1 + off + mem[W+Ra]
data \leftarrow mem[addr]
mem[W+Rd] \leftarrow data
```

4.45 LDW

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
LDW		1	010	0			Rd			011			iı	nm	5	

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
LDW		1	.010	0			Rd			011			iı	nm	5	

Assembly:

LDW Rd, imm

Purpose:

To increase or decrease the address of the register window, and retrieve the prior address of the register window.

Restrictions:

If imm contains a value that is not a multiple of 8, the behavior is **UNPREDICTABLE**. If the long form is used, and imm5[4:3] are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

```
if (has_ext13)
then imm \leftarrow {ext13, imm5[2:0]}
else imm \leftarrow sign_extend_16(imm5)
old \leftarrow W
W \leftarrow W + imm
mem[W+Rd] \leftarrow old
```

Remarks:

See also **STW**. This instruction may be used in a function prologue, where **Rd** is any register chosen to act as a frame pointer.

Notice:

The interpretation of the immediate field of this instruction is not final.

4.46 LDX

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
LDX		0	110	0			Rd			Ra				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
LDX		0)110	0			Rd			Ra				off5		

Assembly:

LDX Rd, Ra, off

Purpose:

To complete a load cycle on external bus at a variable address, with a constant offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off5[2:0]}
else off \leftarrow sign_extend_16(off5)
addr \leftarrow mem[W+Ra] + off
data \leftarrow ext[addr]
mem[W+Rd] \leftarrow data
```

4.47 LDXA

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
LDXA		0)110	1			Rd					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI	110								ех	ct13						1
LDXA	0110			1			Rd					of	f8			

Assembly:

LDXA Rd, off

Purpose:

To complete a load cycle on external bus at a constant absolute address.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off ~ {ext13, off8[2:0]}
else off ~ sign_extend_16(off8)
data ~ ext[off]
mem[W+Rd] ~ data
```

4.48 MOV

Move

Assembly:

MOV Rd, Rs

Purpose:

To move a value from register to register.

Restrictions:

None.

Remarks:

The assembler does not translate any instructions for MOV with identical Rd and Rs, and translates MOV with any other register combination to

AND Rd, Rs, Rs

4.49 MOVI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
MOVI		1	.000	0			Rd					im	m8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI	110								ех	ct13						
MOVI	1000			0			Rd					im	m8			

Assembly:

MOVI Rd, imm

Purpose:

To load a register with a constant.

Restrictions:

If the long form is used, and imm8[7:3] are non-zero, the behavior is UNPREDICTABLE.

Operation:

if (has_ext13)
then imm \leftarrow {ext13, imm8[2:0]}
else imm \leftarrow sign_extend_16(imm8)
mem[W+Rd] \leftarrow imm

4.50 MOVR

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
MOVR		1	000	1			Rd					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
MOVR		1	000	1			Rd					of	f8			

Assembly:

MOVR Rd, off

Purpose:

To load a register with an address relative to PC with a constant offset.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

Operation:

if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
mem[W+Rd] \leftarrow PC + 1 + off

4.51 NOP

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
NOP		10	11			011	11				0	000	000	0		

Assembly:

NOP

Purpose:

To perform no operation while consuming one instruction word.

Operation:

 $PC \ \leftarrow \ PC \ + \ 1$

Remarks:

The **NOP** instruction is encoded as a conditional branch, whose condition is always false, that targets the next instruction.

4.52 NOT

Logical NOT

Assembly:

NOT Rd, Rs

Purpose:

To invert all the bits in a register.

Restrictions:

None.

Remarks:

The translates to a XORI with an 0xFFFF immediate

XORI Rd, Rs, 0xFFFF

4.53 OR

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
OR		0	000	0			Rd			Ra		0	1		Rb	

Assembly:

OR Rd, Ra, Rb

Purpose:

To perform bitwise OR between 16-bit integers in registers.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow opA or opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.54 ORI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ORI		0	0000	1			Rd			Ra		0	1	iı	nm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	xt13						
ORI	00001						Rd			Ra		0	1	iı	mm	3

Assembly:

ORI Rd, Ra, imm

Purpose:

To perform bitwise OR between a 16-bit integer in a register and a constant.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA or opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ROL		0	010	0			Rd			Ra		0	1		Rb	

Assembly:

ROL Rd, Ra, Rb

Purpose:

To perform a left rotate of a 16-bit integer in a register by a variable bit amount.

Restrictions:

If **Rb** contains a value greater than 15, the behavior is **UNPREDICTABLE**.

4.56 ROLI

Encoding (short form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ROLI	00101						Rd			Ra		0	1	iı	nm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110					1		ех	t13						
ROLI	110 00101						Rd			Ra		0	1	iı	mm	3

Assembly:

ROLI Rd, Ra, amount

Purpose:

To perform a left rotate of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_sr(imm3)

res \leftarrow \{opA[15-opB:0], opA[15:16-opB]\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.57 RORI

Rotate Right Immediate

Assembly:

RORI Rd, Ra, amount

Purpose:

To perform a right rotate of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

Remarks:

The assembler translates RORI with amount of 0 to

ROLI Rd, Ra, 0

and **RORI** with any other **amount** to

ROLI Rd, Ra, (16 - amount)

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SBC		0	0001	0			Rd			Ra		1	1		Rb	

Assembly:

SBC Rd, Ra, Rb

Purpose:

To subtract 16-bit two's complement integers in registers, with carry input. If the carry input is 1, the previous operation did not borrow.

Restrictions:

None.

Operation:

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow opA + not opB + C

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = not opB[15]) and (opA[15] <> res[15])
```

Remarks:

A 32-bit subtraction with both operands in registers can be performed as follows:

; Perform {R1, R0} ← {R3, R2} - {R5, R4} SUB R0, R2, R4 SBC R1, R3, R5
4.59 SBCI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SBCI		0	001	1			Rd			Ra		1	1	iı	mm	3

Encoding (long form):

	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
SBCI	00011						Rd			Ra		1	1	iı	nm	3

Assembly:

SBCI Rd, Ra, imm

Purpose:

To subtract a two's complement constant from a 16-bit two's complement integer in a register, with carry input. If the carry input is 1, the previous operation did not borrow.

Restrictions:

None.

Operation:

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA + not opB + C

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = not opB[15]) and (opA[15] <> res[15])
```

Remarks:

A 32-bit subtraction with a register and an immediate operand can be performed as follows:

; Perform {R1, R0} ← {R3, R2} - 0x40001 SUBI R0, R2, 1 SBCI R1, R3, 4

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SLL		0	010	0			Rd			Ra		0	0		Rb	

Assembly:

SLL Rd, Ra, Rb

Purpose:

To perform a left logical shift of a 16-bit integer in a register by a variable bit amount.

Restrictions:

If **Rb** contains a value greater than 15, the behavior is **UNPREDICTABLE**.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow \{opA[15-opB:0], opB\{0\}\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.61 SLLI

Encoding (short form):

	F	Е	D	С	В	A	9	8	7	6	5	4	3	2	1	0
SLLI		0	010	1			Rd			Ra		0	0	i	mm	3

Encoding (long form):

	F	Ε	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
SLLI	110 00101						Rd			Ra		0	0	iı	mm	3

Assembly:

SLLI Rd, Ra, amount

Purpose:

To perform a left logical shift of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is **UNPREDICTABLE**.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_sr(imm3)

res \leftarrow \{opA[15-opB:0], opB\{0\}\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.62 SRA

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SRA		0	010	0			Rd			Ra		1	1		Rb	

Assembly:

SRA Rd, Ra, Rb

Purpose:

To perform a right arithmetical shift of a 16-bit integer in a register by a variable bit amount.

Restrictions:

If **Rb** contains a value greater than 15, the behavior is **UNPREDICTABLE**.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow \{opB\{opA[15]\}, opA[15:opB]\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.63 SRAI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SRAI		0	010	1			Rd			Ra		1	1	iı	mm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
SRAI		0	010	1			Rd			Ra		1	1	iı	mm	3

Assembly:

SRAI Rd, Ra, amount

Purpose:

To perform a right arithmetical shift of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is **UNPREDICTABLE**.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_sr(imm3)

res \leftarrow \{opB\{opA[15]\}, opA[15:opB]\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.64 SRL

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SRL		0	010	0			Rd			Ra		1	0		Rb	

Assembly:

SRL Rd, Ra, Rb

Purpose:

To perform a right logical shift of a 16-bit integer in a register by a variable bit amount.

Restrictions:

If **Rb** contains a value greater than 15, the behavior is **UNPREDICTABLE**.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow \{opB\{0\}, opA[15:opB]\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.65 SRLI

Encoding (short form):

	F	Е	D	С	В	A	9	8	7	6	5	4	3	2	1	0
SRLI		0	010	1			Rd			Ra		1	0	iı	mm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
SRLI		110 00101					Rd			Ra		1	0	iı	mm	3

Assembly:

SRLI Rd, Ra, amount

Purpose:

To perform a right logical shift of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is **UNPREDICTABLE**.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_sr(imm3)

res \leftarrow \{opB\{opA[15]\}, opA[15:opB]\}

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.66 ST

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ST		0	101	0			Rs			Ra				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
ST		0)101	0			Rs			Ra				off5		

Assembly:

ST Rs, Ra, off

Purpose:

To store a word to memory at a variable address, with a constant offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off ~ {ext13, off5[2:0]}
else off ~ sign_extend_16(off5)
addr ~ mem[W+Ra] + off
data ~ mem[W+Rs]
mem[addr] ~ data
```

4.67 STR

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
STR		0	101	1			Rs			Ra				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
STR		0	101	1			Rs			Ra				off5		

Assembly:

STR Rs, Ra, off

Purpose:

To store a word to memory at a constant PC-relative address, with a variable offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off5[2:0]}
else off \leftarrow sign_extend_16(off5)
addr \leftarrow PC + 1 + off + mem[W+Ra]
data \leftarrow mem[W+Rs]
mem[addr] \leftarrow data
```

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
ST₩	10100						000			000		0	0		Rb	

Assembly:

STW Rb

Purpose:

To arbitrarily change the address of the register window.

Restrictions:

If **Rb** contains a value that is not a multiple of 8, the behavior is **UNPREDICTABLE**.

Operation:

 $W \leftarrow mem[W+Rb]$

Remarks:

See also LDW. This instruction may be used in a function epilogue, where **Rb** is any register chosen to act as a frame pointer.

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
STX		0)111	0			Rs			Ra				off5		

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	xt13						
STX		0	111	0			Rs			Ra				off5		

Assembly:

STX Rs, Ra, off

Purpose:

To complete a store cycle on external bus at a variable address, with a constant offset.

Restrictions:

If the long form is used, and **off5[4:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off ~ {ext13, off5[2:0]}
else off ~ sign_extend_16(off5)
addr ~ mem[W+Ra] + off
data ~ mem[W+Rs]
ext[addr] ~ data
```

4.70 STXA

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
STXA		0)111	1			Rs					of	f8			

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
STXA	01111						Rs					of	f8			

Assembly:

STXA Rs, off

Purpose:

To complete a store cycle on external bus at a constant absolute address.

Restrictions:

If the long form is used, and **off8[7:3]** are non-zero, the behavior is **UNPREDICTABLE**.

```
if (has_ext13)
then off \leftarrow {ext13, off8[2:0]}
else off \leftarrow sign_extend_16(off8)
data \leftarrow mem[W+Rs]
ext[off] \leftarrow data
```

4.71 SUB

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SUB		0	0001	0			Rd			Ra		1	0		Rb	

Assembly:

SUB Rd, Ra, Rb

Purpose:

To subtract 16-bit two's complement integers in registers.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow opA + not opB + 1

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = not opB[15]) and (opA[15] <> res[15])
```

4.72 SUBI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
SUBI		0	0001	1			Rd			Ra		1	0	iı	mm	3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110							ех	ct13						
SUBI	F E D C 1 110 00011 00011 00011 00011						Rd			Ra		1	0	iı	mm	3

Assembly:

SUBI Rd, Ra, imm

Purpose:

To subtract a two's complement constant from a 16-bit two's complement integer in a register.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA + not opB + 1

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow res[16]

V \leftarrow (opA[15] = not opB[15]) and (opA[15] <> res[15])
```

4.73 XCHG

Exchange Registers

Assembly:

XCHG Ra, Rb

Purpose:

To exchange the values of two registers.

Restrictions:

None.

Remarks:

The assembler does not translate any instructions for XCHG with identical Ra and Rb, and translates XCHG with any other register combination to

XOR Ra, Ra, Rb XOR Rb, Rb, Ra XOR Ra, Ra, Rb

4.74 XCHW

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
XCHW		10100					Rd			001		0	0		Rb	

Assembly:

XCHW Rd, Rb

Purpose:

To exchange the address of the register window with a general purpose register.

Restrictions:

If **Rb** contains a value that is not a multiple of 8, the behavior is **UNPREDICTABLE**.

Operation:

 $\begin{array}{l} \texttt{old} \ \leftarrow \ \texttt{W} \\ \texttt{W} \ \leftarrow \ \texttt{mem}[\texttt{W}\texttt{+}\texttt{Rb}] \\ \texttt{mem}[\texttt{W}\texttt{+}\texttt{Rd}] \ \leftarrow \ \texttt{old} \end{array}$

Remarks:

This instruction may be used in a context switch routine. For example, if multiple register windows are set up such that each contains the address of the next one in R7, the following code may be used to switch contexts:

yield:

```
XCHW R7, R7
JR R0
; Elsewhere:
JAL R0, yield
```

4.75 XOR

Encoding:

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
XOR		00000					Rd			Ra			0	Rb		

Assembly:

XOR Rd, Ra, Rb

Purpose:

To perform bitwise XOR between 16-bit integers in registers.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

opB \leftarrow mem[W+Rb]

res \leftarrow opA xor opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

4.76 XORI

Encoding (short form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
XORI	00001					Rd			Ra			10		imm3		3

Encoding (long form):

	F	Е	D	С	В	А	9	8	7	6	5	4	3	2	1	0
EXTI		110		ext13												
XORI		0	0000	1			Rd		Ra			10		imm3		

Assembly:

XORI Rd, Ra, imm

Purpose:

To perform bitwise XOR between a 16-bit integer in a register and a constant.

Restrictions:

None.

```
opA \leftarrow mem[W+Ra]

if (has_ext13)

then opB \leftarrow \{ext13, imm3\}

else opB \leftarrow decode_imm_al(imm3)

res \leftarrow opA xor opB

mem[W+Rd] \leftarrow res

Z \leftarrow res[15:0] = 0

S \leftarrow res[15]

C \leftarrow UNDEFINED

V \leftarrow UNDEFINED
```

5 List of Assembly Directives

TBD

6 Function Calling Sequence

TBD