
Boneless-III

Architecture Reference Manual

Notice:

This document is a work in progress and subject to change without warning.
However, the parts that are especially subject to change carry a notice similar to
this one.

1

Contents

Table of Contents 4

1 Introduction 5

2 Guide to Instruction Set 6
2.1 Operation Syntax . 6

2.1.1 Undefined and Unpredictable Behavior 6
2.1.2 Reference Operators . 6
2.1.3 Arithmetic Operators . 7
2.1.4 Logical Operators . 7
2.1.5 Functions . 7

2.2 Registers . 8
2.2.1 Program Counter . 8
2.2.2 General Purpose Registers and the Window 8
2.2.3 Result Flags . 9
2.2.4 Extended Immediate . 9

3 Quick Reference 10
3.1 ALU Instructions . 10

3.1.1 Arithmetic . 10
3.1.2 Logic . 10
3.1.3 Shift & Rotate . 10

3.2 Data Transfer Instructions . 11
3.2.1 General Purpose Registers . 11
3.2.2 Window Register . 11
3.2.3 Memory . 11
3.2.4 External Bus . 11

3.3 Control Transfer Instructions . 12
3.3.1 Unconditional . 12
3.3.2 Conditional on Comparison 12
3.3.3 Conditional on Result . 12
3.3.4 Conditional on Flags . 12

4 List of Instructions 13
4.1 ADC (Add Register with Carry) . 14
4.2 ADCI (Add Immediate with Carry) 15
4.3 ADD (Add Register) . 16
4.4 ADDI (Add Immediate) . 17
4.5 ADJW (Adjust Window Address) . 18
4.6 AND (Bitwise AND with Register) 19
4.7 ANDI (Bitwise AND with Immediate) 20
4.8 BC (Branch if Carry) . 21
4.9 BC0 (Branch if Carry is 0) . 22
4.10 BC1 (Branch if Carry is 1) . 23
4.11 BEQ (Branch if Equal) . 24
4.12 BGES (Branch if Greater or Equal, Signed) 25
4.13 BGEU (Branch if Greater or Equal, Unsigned) 26

2

4.14 BGTS (Branch if Greater Than, Signed) 27
4.15 BGTU (Branch if Greater Than, Unsigned) 28
4.16 BLES (Branch if Less or Equal, Signed) 29
4.17 BLEU (Branch if Less or Equal, Unsigned) 30
4.18 BLTS (Branch if Less Than, Signed) 31
4.19 BLTU (Branch if Less Than, Unsigned) 32
4.20 BNC (Branch if Not Carry) . 33
4.21 BNE (Branch if Not Equal) . 34
4.22 BNS (Branch if Not Sign) . 35
4.23 BNV (Branch if Not Overflow) . 36
4.24 BNZ (Branch if Not Zero) . 37
4.25 BS (Branch if Sign) . 38
4.26 BS0 (Branch if Sign is 0) . 39
4.27 BS1 (Branch if Sign is 1) . 40
4.28 BV (Branch if Overflow) . 41
4.29 BV0 (Branch if Overflow is 0) . 42
4.30 BV1 (Branch if Overflow is 1) . 43
4.31 BZ (Branch if Zero) . 44
4.32 BZ0 (Branch if Zero is 0) . 45
4.33 BZ1 (Branch if Zero is 1) . 46
4.34 CMP (Compare to Register) . 47
4.35 CMPI (Compare to Immediate) . 48
4.36 EXTI (Extend Immediate) . 49
4.37 J (Jump) . 50
4.38 JAL (Jump and Link) . 51
4.39 JR (Jump to Register) . 52
4.40 JRAL (Jump to Register and Link) 53
4.41 JST (Jump through Switch Table) 54
4.42 JVT (Jump through Virtual Table) 55
4.43 LD (Load) . 56
4.44 LDR (Load PC-relative) . 57
4.45 LDW (Adjust and Load Window Address) 58
4.46 LDX (Load External) . 59
4.47 LDXA (Load External Absolute) . 60
4.48 MOV (Move) . 61
4.49 MOVI (Move Immediate) . 62
4.50 MOVR (Move PC-relative Address) 63
4.51 NOP (No Operation) . 64
4.52 NOT (Logical NOT) . 65
4.53 OR (Bitwise OR with Register) . 66
4.54 ORI (Bitwise OR with Immediate) 67
4.55 ROL (Rotate Left) . 68
4.56 ROLI (Rotate Left Immediate) . 69
4.57 RORI (Rotate Right Immediate) . 70
4.58 SBC (Subtract Register with Carry) 71
4.59 SBCI (Subtract Immediate with Carry) 72
4.60 SLL (Shift Left Logical) . 73
4.61 SLLI (Shift Left Logical Immediate) 74

3

4.62 SRA (Shift Right Arithmetical) . 75
4.63 SRAI (Shift Right Arithmetical Immediate) 76
4.64 SRL (Shift Right Logical) . 77
4.65 SRLI (Shift Right Logical Immediate) 78
4.66 ST (Store) . 79
4.67 STR (Store PC-relative) . 80
4.68 STW (Store to Window Address) . 81
4.69 STX (Store External) . 82
4.70 STXA (Store External Absolute) . 83
4.71 SUB (Subtract Register) . 84
4.72 SUBI (Subtract Immediate) . 85
4.73 XCHG (Exchange Registers) . 86
4.74 XCHW (Exchange Window Address) 87
4.75 XOR (Bitwise XOR with Register) 88
4.76 XORI (Bitwise XOR with Immediate) 89

5 List of Assembly Directives 90

6 Function Calling Sequence 91

4

1 Introduction

TBD

5

2 Guide to Instruction Set

This guide first explains how to interpret the notation used in this document. After,
it explains the available registers and their behavior.

2.1 Operation Syntax

This document uses the following syntax and operators to describe the operation of
each instruction.

2.1.1 Undefined and Unpredictable Behavior

To describe the boundaries of legal program behavior, this document uses the words
UNDEFINED and UNPREDICTABLE.

When execution encounters UNPREDICTABLE behavior, the implementation
may perform any behavior, including but not limited to hanging and failing to
continue execution. The resulting behavior may be different between executions
even under the same circumstances.

Certain operations, including any operation with an UNDEFINED input, will
produce an UNDEFINED result. Reading a register whose value is currently
UNDEFINED may produce any bit pattern. Multiple consecutive reads of such a
register may also produce different bit patterns on each read.

2.1.2 Reference Operators

The following operators reference parts of variables or the attached memory.

• opB ← opA: Store opA into opB. If necessary, opA is implicitly zero-extended
or truncated to match the length of opB.

• op[b:a]: Reference bits a through b, inclusive, of op. If a is greater than b,
the resulting length is zero.

• mem[addr]: Reference memory word at word address addr. The address is
implicitly ANDed with 0xFFFF.

• ext[addr]: Reference external bus word at word address addr. The address
is implicitly ANDed with 0xFFFF.

• {opA, opB}: Concatenate the bits of opA and opB. opA makes the high-order
bits of the result and opB makes the low-order bits.

• opB{opA}: Construct the result by repeating opA opB times.

6

2.1.3 Arithmetic Operators

The arithmetic operators perform arithmetic or bitwise logic between the operands.
All operands to these operators are unsigned. If one operand is shorter than the
other, it is zero-extended to match the length of the other.

• opA + opB: Add opA and opB. The high bit of the result is a carry bit.

• opA and opB: Perform a bitwise AND between opA and opB.

• opA or opB: Perform a bitwise OR between opA and opB.

• opA xor opB: Perform a bitwise XOR between opA and opB.

• not op: Perform a bitwise negation of op.

2.1.4 Logical Operators

The logical operators yield 1 if the condition is satisfied and 0 if it is not. If one
operand is shorter than the other, it is zero-extended to match the length of the
other.

• opA = opB: Satisfied if opA equals opB.

• opA <> opB: Satisfied if opA does not equal opB.

2.1.5 Functions

• sign extend 16(op): Perform a two’s complement sign extension of op by
replicating the high bit until the total length is 16 bits.

• decode imm al(op): Calculate the immediate value of an arithmetic or logical
instruction according to the following table.
op Result
0 0x0000

1 0x0001

2 0x8000

3 TBD

4 0x00FF

5 0xFF00

6 0x7FFF

7 0xFFFF

• decode imm sr(op): Calculate the immediate value of a shift or rotate instruc-
tion according to the following table.

7

op Result
0 8
1 1
2 2
3 3
4 4
5 5
6 6
7 7

2.2 Registers

The CPU contains a number of registers that are used to store data, computation
results, and system state. The registers are operated on as described by the operation
of each instruction. If a register is not modified by an instruction, its value is
preserved, except where noted in this register definition.

2.2.1 Program Counter

The CPU features a 16-bit program counter named PC. All instructions are 16 bit,
so all values of PC are valid.

Unless otherwise specified by an instruction’s operation, PC ← PC+1 after each
instruction.

The behavior of PC ← op defines that op is truncated to 16 bits to fit PC. Thus,
adjusting PC is defined to wrap.

At reset, PC ← 0x0000, but this value can be changed by the implementation.

2.2.2 General Purpose Registers and the Window

The CPU has eight 16-bit general purpose (GP) integer registers, named R0 through
R7. Each register can hold any 16-bit value. Most instructions interpret the values
as unsigned integers, but some treat values as two’s complement signed integers
(denoted by a ”signed” operation).

The GP registers are fully interchangeable and any register can be used as source
and/or destination for any instruction which uses a GP register. The register file
is windowed: register values are stored in main memory, starting at the window
address.

The current window address is stored in a 16-bit register named W. Its value can
only be set and/or read by the four window instructions: ADJW, LDW, STW, and XCHW.
Setting W logically changes the values of all GP registers simultaneously, enabling
fast procedure calls and task switches.

W is added to the number of a GP register to calculate the address where that register
is stored. For example, the operation mem[W+3] ← mem[W+1] sets R3 equal to R1.

8

The behavior of W ← op and mem[op] defines that op is truncated to 16 bits to fit
W. Thus, adjusting W and calculating GP register addresses are defined to wrap.

At reset, W ← 0xFFF8, but this value can be changed by the implementation.

2.2.3 Result Flags

The CPU has four result flags to describe the result of ALU computations. The
flags are updated by most ALU instructions. The CPU can act on the result of the
flags by executing a conditional branch which transfers control if the flags are in
the desired state. The exact contents of each flag after an instruction executes are
explained in the instruction’s operation, but the general purpose and behavior of
each flag are explained below.

The Z (Zero) flag is set to 1 if the low 16 bits of the result of the operation were
zero, and 0 otherwise.

The S (Sign) flag is set to the 15th bit of the result of the operation.

The C (Carry) flag is set to the 16th bit of the result of an arithmetic operation, or
UNDEFINED if the operation was logical.

The V (oVerflow) flag is set if the arithmetic operation encountered two’s complement
overflow, or UNDEFINED if the operation was logical.

2.2.4 Extended Immediate

The CPU has two registers that help build a 16-bit immediate value.

The EXTI instruction sets the ext13 register to its 13-bit immediate and the has ext13
register to 1.

Generally, if an instruction can use an immediate and has ext13 is 1, the instruction
will use ext13 as the high 13 bits of the the immediate value and take the low 3
bits from the instruction itself. The exact behavior of an instruction with regards
to has ext13 and ext13 is specified in the instruction’s operation.

Except for after EXTI, ext13 ← UNDEFINED and has ext13 ← 0 after every in-
struction, even those which do not use either register.

9

3 Quick Reference

This chapter summarizes the Boneless instruction set. Instructions are grouped
according to their function.

3.1 ALU Instructions

3.1.1 Arithmetic

Mnemonic Function
ADD Rd, Ra, Rb

ADDI Rd, Ra, imm
Add register to register/immediate.

ADC Rd, Ra, Rb

ADCI Rd, Ra, imm

Add register to register/immediate, including carry input.
For multi-word addition.

SUB Rd, Ra, Rb

SUBI Rd, Ra, imm
Subtract register/immediate from register.

SBC Rd, Ra, Rb

SBCI Rd, Ra, imm

Subtract register/immediate from register, including carry
input. For multi-word subtraction.

CMP Ra, Rb

CMPI Ra, imm

Compare register with register/immediate, then set flags
according to result.

3.1.2 Logic

Mnemonic Function
AND Rd, Ra, Rb

ANDI Rd, Ra, imm
Bitwise AND between register and register/immediate.

OR Rd, Ra, Rb

ORI Rd, Ra, imm
Bitwise OR between register and register/immediate.

XOR Rd, Ra, Rb

XORI Rd, Ra, imm
Bitwise XOR between register and register/immediate.

NOT Rd, Ra Bitwise NOT between register and register.

3.1.3 Shift & Rotate

Mnemonic Function
SLL Rd, Ra, Rb

SLLI Rd, Ra, imm
Shift register left by register/immediate amount.

SRL Rd, Ra, Rb

SRLI Rd, Ra, imm

Shift register right by register/immediate amount, with zero
extension.

SRA Rd, Ra, Rb

SRAI Rd, Ra, imm

Shift register right by register/immediate amount, with sign
extension.

ROL Rd, Ra, Rb

ROLI Rd, Ra, imm
Rotate register left by register/immediate amount.

RORI Rd, Ra, imm Rotate register right by immediate amount.

10

3.2 Data Transfer Instructions

3.2.1 General Purpose Registers

Mnemonic Function
MOV Rd, Rs

MOVI Rd, imm
Move register/immediate into register.

MOVR Rd, off Move PC-relative offset into register.
XCHG Ra, Rb Exchange values of two registers.
NOP Do nothing.

EXTI imm
Extend immediate of following instruction. Automatically placed
by assembler; should not be manually written.

3.2.2 Window Register

Mnemonic Function
ADJW imm Add signed immediate to W.
LDW Rd, imm Add signed immediate to W, then store previous W to register.
STW Rb Move register into W.
XCHW Rd, Rb Move Rb into W, then store previous W to Rd.

3.2.3 Memory

Mnemonic Function
LD Rd, Ra, off Load Rd from memory at Ra plus offset.
LDR Rd, Ra, off Load Rd from memory at Ra plus PC-relative offset.
ST Rs, Ra, off Store Rs to memory at Ra plus offset.
STR Rs, Ra, off Store Rs to memory at Ra plus PC-relative offset.

3.2.4 External Bus

Mnemonic Function
LDX Rd, Ra, off Load Rd from external bus at Ra plus offset.
LDXA Rd, off Load Rd from external bus at absolute offset.
STX Rs, Ra, off Store Rs to external bus at Ra plus offset.
STXA Rs, off Store Rs to external bus at absolute offset.

11

3.3 Control Transfer Instructions

3.3.1 Unconditional

Mnemonic Function
J label Jump to label.

JAL Rd, label
Store address of next instruction into register, then jump to
label. For calling subroutines.

JR Rs, off Jump to Rs plus PC-relative offset.
JRAL Rd, Rb Store address of next instruction into Rd, then jump to Rb.
JST Rs, off Jump through entry Rs of switch table at PC-relative offset.
JVT Rd, off Jump through entry off of virtual table at Rd.

3.3.2 Conditional on Comparison

These instructions branch to label after a CMP Ra, Rb instruction if the given
condition is met when the operands are treated as numbers with the given signedness.

Condition Signed Comparison Unsigned Comparison

Ra = Rb BEQ label BEQ label

Ra > Rb BGTS label BGTU label

Ra >= Rb BGES label BGEU label

Ra <= Rb BLES label BLEU label

Ra < Rb BLTS label BLTU label

Ra <> Rb BNE label BNE label

3.3.3 Conditional on Result

These instructions branch to label if the last arithmetic or logical operation met
the given condition.

Condition is True is False

Result is equal to zero BZ label BNZ label

Result is negative BS label BNS label

Operation encountered unsigned overflow BC label BNC label

Operation encountered signed overflow BV label BNV label

3.3.4 Conditional on Flags

These instructions branch to label if the given flag is in the given state.

Flag is Set is Clear

Zero BZ1 label BZ0 label

Sign BS1 label BS0 label

Carry BC1 label BC0 label

oVerflow BV1 label BV0 label

12

4 List of Instructions

The following pages provide a detailed description of instructions, arranged in al-
phabetical order.

Executing any instruction with an encoding not present on the following pages has
UNPREDICTABLE behavior.

13

4.1 ADC Add Register with Carry

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
ADC 00010 Rd Ra 01 Rb

Assembly:

ADC Rd, Ra, Rb

Purpose:

To add 16-bit integers in registers, with carry input.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA + opB + C

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = opB[15]) and (opA[15] <> res[15])

Remarks:

A 32-bit addition with both operands in registers can be performed as follows:

; Perform {R1, R0} ← {R3, R2} + {R5, R4}

ADD R0, R2, R4

ADC R1, R3, R5

14

4.2 ADCI Add Immediate with Carry

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ADCI 00011 Rd Ra 01 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ADCI 00011 Rd Ra 01 imm3

Assembly:

ADCI Rd, Ra, imm

Purpose:

To add a constant to a 16-bit integer in a register, with carry input.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA + opB + C

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = opB[15]) and (opA[15] <> res[15])

Remarks:

A 32-bit addition with a register and an immediate operand can be performed as
follows:

; Perform {R1, R0} ← {R3, R2} + 0x40001

ADDI R0, R2, 1

ADCI R1, R3, 4

15

4.3 ADD Add Register

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
ADD 00010 Rd Ra 00 Rb

Assembly:

ADD Rd, Ra, Rb

Purpose:

To add 16-bit integers in registers.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA + opB

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = opB[15]) and (opA[15] <> res[15])

16

4.4 ADDI Add Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ADDI 00011 Rd Ra 00 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ADDI 00011 Rd Ra 00 imm3

Assembly:

ADDI Rd, Ra, imm

Purpose:

To add a constant to a 16-bit integer in a register.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA + opB

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = opB[15]) and (opA[15] <> res[15])

17

4.5 ADJW Adjust Window Address

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ADJW 10100 000 010 imm5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ADJW 10100 000 010 imm5

Assembly:

ADJW imm

Purpose:

To increase or decrease the address of the register window.

Restrictions:

If imm contains a value that is not a multiple of 8, the behavior is
UNPREDICTABLE. If the long form is used, and imm5[4:3] are non-zero,
the behavior is UNPREDICTABLE.

Operation:

if (has ext13)
then imm ← {ext13, imm5[2:0]}

else imm ← sign extend 16(imm5)

W ← W + imm

Remarks:

This instruction may be used in a function prologue or epilogue.

Notice:

The interpretation of the immediate field of this instruction is not final.

18

4.6 AND Bitwise AND with Register

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
AND 00000 Rd Ra 00 Rb

Assembly:

AND Rd, Ra, Rb

Purpose:

To perform bitwise AND between 16-bit integers in registers.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA and opB
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

19

4.7 ANDI Bitwise AND with Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ANDI 00001 Rd Ra 00 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ANDI 00001 Rd Ra 00 imm3

Assembly:

ANDI Rd, Ra, imm

Purpose:

To perform bitwise AND between a 16-bit integer in a register and a constant.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA and opB
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

20

4.8 BC Branch if Carry

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BC 1011 1010 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BC 1011 1010 off8

Assembly:

BC label

Purpose:

To transfer control if the last arithmetic operation resulted in unsigned overflow.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (C)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BC1.

21

4.9 BC0 Branch if Carry is 0

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BC0 1011 0010 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BC0 1011 0010 off8

Assembly:

BC0 label

Purpose:

To transfer control if the carry (C) flag is 0.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not C)
then PC ← PC + 1 + off

else PC ← PC + 1

22

4.10 BC1 Branch if Carry is 1

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BC1 1011 1010 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BC1 1011 1010 off8

Assembly:

BC1 label

Purpose:

To transfer control if the carry (C) flag is 1.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (C)
then PC ← PC + 1 + off

else PC ← PC + 1

23

4.11 BEQ Branch if Equal

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BEQ 1011 1000 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BEQ 1011 1000 off8

Assembly:

BEQ label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is equal to Rb.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (Z)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BZ1.

24

4.12 BGES Branch if Greater or Equal, Signed

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BGES 1011 0101 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BGES 1011 0101 off8

Assembly:

BGES label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than or equal
to Rb when interpreted as signed integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not (S xor V))
then PC ← PC + 1 + off

else PC ← PC + 1

25

4.13 BGEU Branch if Greater or Equal, Unsigned

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BGEU 1011 1010 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BGEU 1011 1010 off8

Assembly:

BGEU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than or equal
to Rb when interpreted as unsigned integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (C)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BC1.

26

4.14 BGTS Branch if Greater Than, Signed

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BGTS 1011 0110 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BGTS 1011 0110 off8

Assembly:

BGTS label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than Rb when
interpreted as signed integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not ((S xor V) or Z))
then PC ← PC + 1 + off

else PC ← PC + 1

27

4.15 BGTU Branch if Greater Than, Unsigned

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BGTU 1011 0100 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BGTU 1011 0100 off8

Assembly:

BGTU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is greater than Rb when
interpreted as unsigned integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not ((not C) or Z))
then PC ← PC + 1 + off

else PC ← PC + 1

28

4.16 BLES Branch if Less or Equal, Signed

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BLES 1011 1110 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BLES 1011 1110 off8

Assembly:

BLES label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than or equal to
Rb when interpreted as signed integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if ((S xor V) or Z)
then PC ← PC + 1 + off

else PC ← PC + 1

29

4.17 BLEU Branch if Less or Equal, Unsigned

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BLEU 1011 1100 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BLEU 1011 1100 off8

Assembly:

BLEU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than or equal to
Rb when interpreted as unsigned integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if ((not C) or Z)
then PC ← PC + 1 + off

else PC ← PC + 1

30

4.18 BLTS Branch if Less Than, Signed

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BLTS 1011 1101 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BLTS 1011 1101 off8

Assembly:

BLTS label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than Rb when
interpreted as signed integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (S xor V)
then PC ← PC + 1 + off

else PC ← PC + 1

31

4.19 BLTU Branch if Less Than, Unsigned

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BLTU 1011 0010 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BLTU 1011 0010 off8

Assembly:

BLTU label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is less than Rb when
interpreted as unsigned integers.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not C)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BC0.

32

4.20 BNC Branch if Not Carry

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BNC 1011 0010 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BNC 1011 0010 off8

Assembly:

BNC label

Purpose:

To transfer control if the last arithmetic operation did not result in unsigned
overflow.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not C)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BC0.

33

4.21 BNE Branch if Not Equal

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BNE 1011 0000 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BNE 1011 0000 off8

Assembly:

BNE label

Purpose:

To transfer control after a CMP Ra, Rb instruction if Ra is not equal to Rb.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not Z)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BZ0.

34

4.22 BNS Branch if Not Sign

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BNS 1011 0001 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BNS 1011 0001 off8

Assembly:

BNS label

Purpose:

To transfer control if the last arithmetic operation did not produce a negative
result.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not S)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BS0.

35

4.23 BNV Branch if Not Overflow

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BNV 1011 0011 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BNV 1011 0011 off8

Assembly:

BNV label

Purpose:

To transfer control if the last arithmetic operation did not result in signed overflow.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not V)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BV0.

36

4.24 BNZ Branch if Not Zero

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BNZ 1011 0000 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BNZ 1011 0000 off8

Assembly:

BNZ label

Purpose:

To transfer control if the last operation produced a result not equal to zero.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not Z)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BZ0.

37

4.25 BS Branch if Sign

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BS 1011 1001 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BS 1011 1001 off8

Assembly:

BS label

Purpose:

To transfer control if the last arithmetic operation produced a negative result.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (S)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BS1.

38

4.26 BS0 Branch if Sign is 0

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BS0 1011 0001 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BS0 1011 0001 off8

Assembly:

BS0 label

Purpose:

To transfer control if the sign (S) flag is 0.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not S)
then PC ← PC + 1 + off

else PC ← PC + 1

39

4.27 BS1 Branch if Sign is 1

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BS1 1011 1001 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BS1 1011 1001 off8

Assembly:

BS1 label

Purpose:

To transfer control if the sign (S) flag is 1.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (S)
then PC ← PC + 1 + off

else PC ← PC + 1

40

4.28 BV Branch if Overflow

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BV 1011 1011 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BV 1011 1011 off8

Assembly:

BV label

Purpose:

To transfer control if the last arithmetic operation resulted in signed overflow.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (V)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BV1.

41

4.29 BV0 Branch if Overflow is 0

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BV0 1011 0011 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BV0 1011 0011 off8

Assembly:

BV0 label

Purpose:

To transfer control if the overflow (V) flag is 0.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not V)
then PC ← PC + 1 + off

else PC ← PC + 1

42

4.30 BV1 Branch if Overflow is 1

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BV1 1011 1011 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BV1 1011 1011 off8

Assembly:

BV1 label

Purpose:

To transfer control if the overflow (V) flag is 1.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (V)
then PC ← PC + 1 + off

else PC ← PC + 1

43

4.31 BZ Branch if Zero

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BZ 1011 1000 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BZ 1011 1000 off8

Assembly:

BZ label

Purpose:

To transfer control if the last operation produced a result equal to zero.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (Z)
then PC ← PC + 1 + off

else PC ← PC + 1

Remarks:

This instruction has the same encoding as BZ1.

44

4.32 BZ0 Branch if Zero is 0

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BZ0 1011 0000 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BZ0 1011 0000 off8

Assembly:

BZ0 label

Purpose:

To transfer control if the zero (Z) flag is 0.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (not Z)
then PC ← PC + 1 + off

else PC ← PC + 1

45

4.33 BZ1 Branch if Zero is 1

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
BZ1 1011 1000 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
BZ1 1011 1000 off8

Assembly:

BZ1 label

Purpose:

To transfer control if the zero (Z) flag is 1.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

if (Z)
then PC ← PC + 1 + off

else PC ← PC + 1

46

4.34 CMP Compare to Register

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
CMP 00000 000 Ra 11 Rb

Assembly:

CMP Ra, Rb

Purpose:

To compare 16-bit two’s complement integers in registers.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA + not opB + 1
Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = not opB[15]) and (opA[15] <> res[15])

Remarks:

This instruction behaves identically to SUB, with the exception that it discards
the computed value.

47

4.35 CMPI Compare to Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
CMPI 00001 000 Ra 11 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
CMPI 00001 000 Ra 11 imm3

Assembly:

CMPI Ra, imm

Purpose:

To compare a two’s complement constant to a 16-bit two’s complement integer in
a register.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA + not opB + 1
Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = not opB[15]) and (opA[15] <> res[15])

Remarks:

This instruction behaves identically to SUBI, with the exception that it discards
the computed value.

48

4.36 EXTI Extend Immediate

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 imm13

Assembly:

EXTI imm

Purpose:

To extend the range of immediate in the following instruction.

Restrictions:

None.

Operation:

ext13 ← imm13

has ext13 ← 1

Remarks:

This instruction is automatically emitted by the assembler while translating other
instructions. As it changes both the meaning of and the constraints placed on
the immediate field in the following instruction, placing it manually may lead to
unexpected results.

49

4.37 J Jump

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
J 1011 1111 off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
J 1011 1111 off8

Assembly:

J label

Purpose:

To unconditionally transfer control.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

PC ← PC + 1 + off

50

4.38 JAL Jump and Link

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
JAL 10101 Rd off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
JAL 10101 Rd off8

Assembly:

JAL Rd, label

Purpose:

To transfer control to a subroutine.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

mem[W+Rd] ← PC + 1

PC ← PC + 1 + off

51

4.39 JR Jump to Register

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
JR 10100 Rs 100 off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
JR 10100 Rs 100 off5

Assembly:

JR Rs, off

Purpose:

To transfer control to a variable absolute address contained in a register, with a
constant offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

PC ← mem[W+Ra] + off

52

4.40 JRAL Jump to Register and Link

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
JRAL 10100 Rd 101 00 Rb

Assembly:

JRAL Rd, Rb

Purpose:

To transfer control to a subroutine whose variable absolute address is contained
in a register.

Restrictions:

None.

Operation:

addr ← mem[W+Rb]

mem[W+Rd] ← PC + 1

PC ← addr

53

4.41 JST Jump through Switch Table

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
JST 10100 Rs 111 off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
JST 10100 Rs 111 off5

Assembly:

JST Rs, off

Purpose:

To transfer control to an address contained in a jump table at a variable offset,
where the address is relative to the location of the table.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

table ← PC + 1 + off

entry ← mem[W+Rs]

addr ← mem[table + entry]

PC ← table + addr

54

4.42 JVT Jump through Virtual Table

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
JVT 10100 Rs 110 off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
JVT 10100 Rs 110 off5

Assembly:

JVT Rs, off

Purpose:

To transfer control to an address contained in a jump table at a constant offset,
where the address is relative to the location of the table.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

table ← mem[W+Rs]

addr ← mem[table + off]

PC ← table + addr

55

4.43 LD Load

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
LD 01000 Rd Ra off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
LD 01000 Rd Ra off5

Assembly:

LD Rd, Ra, off

Purpose:

To load a word from memory at a variable address, with a constant offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

addr ← mem[W+Ra] + off

data ← mem[addr]

mem[W+Rd] ← data

56

4.44 LDR Load PC-relative

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
LDR 01001 Rd Ra off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
LDR 01001 Rd Ra off5

Assembly:

LDR Rd, Ra, off

Purpose:

To load a word from memory at a constant PC-relative address, with a variable
offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

addr ← PC + 1 + off + mem[W+Ra]

data ← mem[addr]

mem[W+Rd] ← data

57

4.45 LDW Adjust and Load Window Address

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
LDW 10100 Rd 011 imm5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
LDW 10100 Rd 011 imm5

Assembly:

LDW Rd, imm

Purpose:

To increase or decrease the address of the register window, and retrieve the prior
address of the register window.

Restrictions:

If imm contains a value that is not a multiple of 8, the behavior is
UNPREDICTABLE. If the long form is used, and imm5[4:3] are non-zero,
the behavior is UNPREDICTABLE.

Operation:

if (has ext13)
then imm ← {ext13, imm5[2:0]}

else imm ← sign extend 16(imm5)

old ← W

W ← W + imm

mem[W+Rd] ← old

Remarks:

See also STW. This instruction may be used in a function prologue, where Rd is
any register chosen to act as a frame pointer.

Notice:

The interpretation of the immediate field of this instruction is not final.

58

4.46 LDX Load External

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
LDX 01100 Rd Ra off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
LDX 01100 Rd Ra off5

Assembly:

LDX Rd, Ra, off

Purpose:

To complete a load cycle on external bus at a variable address, with a constant
offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

addr ← mem[W+Ra] + off

data ← ext[addr]

mem[W+Rd] ← data

59

4.47 LDXA Load External Absolute

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
LDXA 01101 Rd off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
LDXA 01101 Rd off8

Assembly:

LDXA Rd, off

Purpose:

To complete a load cycle on external bus at a constant absolute address.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

data ← ext[off]

mem[W+Rd] ← data

60

4.48 MOV Move

Assembly:

MOV Rd, Rs

Purpose:

To move a value from register to register.

Restrictions:

None.

Remarks:

The assembler does not translate any instructions for MOV with identical Rd and
Rs, and translates MOV with any other register combination to

AND Rd, Rs, Rs

61

4.49 MOVI Move Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
MOVI 10000 Rd imm8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
MOVI 10000 Rd imm8

Assembly:

MOVI Rd, imm

Purpose:

To load a register with a constant.

Restrictions:

If the long form is used, and imm8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then imm ← {ext13, imm8[2:0]}

else imm ← sign extend 16(imm8)

mem[W+Rd] ← imm

62

4.50 MOVR Move PC-relative Address

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
MOVR 10001 Rd off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
MOVR 10001 Rd off8

Assembly:

MOVR Rd, off

Purpose:

To load a register with an address relative to PC with a constant offset.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

mem[W+Rd] ← PC + 1 + off

63

4.51 NOP No Operation

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
NOP 1011 0111 00000000

Assembly:

NOP

Purpose:

To perform no operation while consuming one instruction word.

Operation:

PC ← PC + 1

Remarks:

The NOP instruction is encoded as a conditional branch, whose condition is always
false, that targets the next instruction.

64

4.52 NOT Logical NOT

Assembly:

NOT Rd, Rs

Purpose:

To invert all the bits in a register.

Restrictions:

None.

Remarks:

The translates to a XORI with an 0xFFFF immediate

XORI Rd, Rs, 0xFFFF

65

4.53 OR Bitwise OR with Register

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
OR 00000 Rd Ra 01 Rb

Assembly:

OR Rd, Ra, Rb

Purpose:

To perform bitwise OR between 16-bit integers in registers.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA or opB
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

66

4.54 ORI Bitwise OR with Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ORI 00001 Rd Ra 01 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ORI 00001 Rd Ra 01 imm3

Assembly:

ORI Rd, Ra, imm

Purpose:

To perform bitwise OR between a 16-bit integer in a register and a constant.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA or opB
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

67

4.55 ROL Rotate Left

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
ROL 00100 Rd Ra 01 Rb

Assembly:

ROL Rd, Ra, Rb

Purpose:

To perform a left rotate of a 16-bit integer in a register by a variable bit amount.

Restrictions:

If Rb contains a value greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← {opA[15-opB:0], opA[15:16-opB]}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

68

4.56 ROLI Rotate Left Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ROLI 00101 Rd Ra 01 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ROLI 00101 Rd Ra 01 imm3

Assembly:

ROLI Rd, Ra, amount

Purpose:

To perform a left rotate of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm sr(imm3)

res ← {opA[15-opB:0], opA[15:16-opB]}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

69

4.57 RORI Rotate Right Immediate

Assembly:

RORI Rd, Ra, amount

Purpose:

To perform a right rotate of a 16-bit integer in a register by a constant bit amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

Remarks:

The assembler translates RORI with amount of 0 to

ROLI Rd, Ra, 0

and RORI with any other amount to

ROLI Rd, Ra, (16 - amount)

70

4.58 SBC Subtract Register with Carry

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
SBC 00010 Rd Ra 11 Rb

Assembly:

SBC Rd, Ra, Rb

Purpose:

To subtract 16-bit two’s complement integers in registers, with carry input. If the
carry input is 1, the previous operation did not borrow.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA + not opB + C
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = not opB[15]) and (opA[15] <> res[15])

Remarks:

A 32-bit subtraction with both operands in registers can be performed as follows:

; Perform {R1, R0} ← {R3, R2} - {R5, R4}

SUB R0, R2, R4

SBC R1, R3, R5

71

4.59 SBCI Subtract Immediate with Carry

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
SBCI 00011 Rd Ra 11 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
SBCI 00011 Rd Ra 11 imm3

Assembly:

SBCI Rd, Ra, imm

Purpose:

To subtract a two’s complement constant from a 16-bit two’s complement integer
in a register, with carry input. If the carry input is 1, the previous operation did
not borrow.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA + not opB + C
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = not opB[15]) and (opA[15] <> res[15])

Remarks:

A 32-bit subtraction with a register and an immediate operand can be performed
as follows:

; Perform {R1, R0} ← {R3, R2} - 0x40001

SUBI R0, R2, 1

SBCI R1, R3, 4

72

4.60 SLL Shift Left Logical

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
SLL 00100 Rd Ra 00 Rb

Assembly:

SLL Rd, Ra, Rb

Purpose:

To perform a left logical shift of a 16-bit integer in a register by a variable bit
amount.

Restrictions:

If Rb contains a value greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← {opA[15-opB:0], opB{0}}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

73

4.61 SLLI Shift Left Logical Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
SLLI 00101 Rd Ra 00 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
SLLI 00101 Rd Ra 00 imm3

Assembly:

SLLI Rd, Ra, amount

Purpose:

To perform a left logical shift of a 16-bit integer in a register by a constant bit
amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm sr(imm3)

res ← {opA[15-opB:0], opB{0}}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

74

4.62 SRA Shift Right Arithmetical

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
SRA 00100 Rd Ra 11 Rb

Assembly:

SRA Rd, Ra, Rb

Purpose:

To perform a right arithmetical shift of a 16-bit integer in a register by a variable
bit amount.

Restrictions:

If Rb contains a value greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← {opB{opA[15]}, opA[15:opB]}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

75

4.63 SRAI Shift Right Arithmetical Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
SRAI 00101 Rd Ra 11 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
SRAI 00101 Rd Ra 11 imm3

Assembly:

SRAI Rd, Ra, amount

Purpose:

To perform a right arithmetical shift of a 16-bit integer in a register by a constant
bit amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm sr(imm3)

res ← {opB{opA[15]}, opA[15:opB]}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

76

4.64 SRL Shift Right Logical

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
SRL 00100 Rd Ra 10 Rb

Assembly:

SRL Rd, Ra, Rb

Purpose:

To perform a right logical shift of a 16-bit integer in a register by a variable bit
amount.

Restrictions:

If Rb contains a value greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← {opB{0}, opA[15:opB]}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

77

4.65 SRLI Shift Right Logical Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
SRLI 00101 Rd Ra 10 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
SRLI 00101 Rd Ra 10 imm3

Assembly:

SRLI Rd, Ra, amount

Purpose:

To perform a right logical shift of a 16-bit integer in a register by a constant bit
amount.

Restrictions:

If amount is greater than 15, the behavior is UNPREDICTABLE.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm sr(imm3)

res ← {opB{opA[15]}, opA[15:opB]}

mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

78

4.66 ST Store

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
ST 01010 Rs Ra off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
ST 01010 Rs Ra off5

Assembly:

ST Rs, Ra, off

Purpose:

To store a word to memory at a variable address, with a constant offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

addr ← mem[W+Ra] + off

data ← mem[W+Rs]

mem[addr] ← data

79

4.67 STR Store PC-relative

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
STR 01011 Rs Ra off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
STR 01011 Rs Ra off5

Assembly:

STR Rs, Ra, off

Purpose:

To store a word to memory at a constant PC-relative address, with a variable
offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

addr ← PC + 1 + off + mem[W+Ra]

data ← mem[W+Rs]

mem[addr] ← data

80

4.68 STW Store to Window Address

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
STW 10100 000 000 00 Rb

Assembly:

STW Rb

Purpose:

To arbitrarily change the address of the register window.

Restrictions:

If Rb contains a value that is not a multiple of 8, the behavior is
UNPREDICTABLE.

Operation:

W ← mem[W+Rb]

Remarks:

See also LDW. This instruction may be used in a function epilogue, where Rb is any
register chosen to act as a frame pointer.

81

4.69 STX Store External

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
STX 01110 Rs Ra off5

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
STX 01110 Rs Ra off5

Assembly:

STX Rs, Ra, off

Purpose:

To complete a store cycle on external bus at a variable address, with a constant
offset.

Restrictions:

If the long form is used, and off5[4:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off5[2:0]}

else off ← sign extend 16(off5)

addr ← mem[W+Ra] + off

data ← mem[W+Rs]

ext[addr] ← data

82

4.70 STXA Store External Absolute

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
STXA 01111 Rs off8

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
STXA 01111 Rs off8

Assembly:

STXA Rs, off

Purpose:

To complete a store cycle on external bus at a constant absolute address.

Restrictions:

If the long form is used, and off8[7:3] are non-zero, the behavior is
UNPREDICTABLE.

Operation:

if (has ext13)
then off ← {ext13, off8[2:0]}

else off ← sign extend 16(off8)

data ← mem[W+Rs]

ext[off] ← data

83

4.71 SUB Subtract Register

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
SUB 00010 Rd Ra 10 Rb

Assembly:

SUB Rd, Ra, Rb

Purpose:

To subtract 16-bit two’s complement integers in registers.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA + not opB + 1
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = not opB[15]) and (opA[15] <> res[15])

84

4.72 SUBI Subtract Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
SUBI 00011 Rd Ra 10 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
SUBI 00011 Rd Ra 10 imm3

Assembly:

SUBI Rd, Ra, imm

Purpose:

To subtract a two’s complement constant from a 16-bit two’s complement integer
in a register.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA + not opB + 1
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← res[16]

V ← (opA[15] = not opB[15]) and (opA[15] <> res[15])

85

4.73 XCHG Exchange Registers

Assembly:

XCHG Ra, Rb

Purpose:

To exchange the values of two registers.

Restrictions:

None.

Remarks:

The assembler does not translate any instructions for XCHG with identical Ra and
Rb, and translates XCHG with any other register combination to

XOR Ra, Ra, Rb

XOR Rb, Rb, Ra

XOR Ra, Ra, Rb

86

4.74 XCHW Exchange Window Address

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
XCHW 10100 Rd 001 00 Rb

Assembly:

XCHW Rd, Rb

Purpose:

To exchange the address of the register window with a general purpose register.

Restrictions:

If Rb contains a value that is not a multiple of 8, the behavior is
UNPREDICTABLE.

Operation:

old ← W

W ← mem[W+Rb]

mem[W+Rd] ← old

Remarks:

This instruction may be used in a context switch routine. For example, if multiple
register windows are set up such that each contains the address of the next one in
R7, the following code may be used to switch contexts:

yield:

XCHW R7, R7

JR R0

; Elsewhere:

JAL R0, yield

87

4.75 XOR Bitwise XOR with Register

Encoding:

F E D C B A 9 8 7 6 5 4 3 2 1 0
XOR 00000 Rd Ra 10 Rb

Assembly:

XOR Rd, Ra, Rb

Purpose:

To perform bitwise XOR between 16-bit integers in registers.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

opB ← mem[W+Rb]

res ← opA xor opB
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

88

4.76 XORI Bitwise XOR with Immediate

Encoding (short form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
XORI 00001 Rd Ra 10 imm3

Encoding (long form):

F E D C B A 9 8 7 6 5 4 3 2 1 0
EXTI 110 ext13
XORI 00001 Rd Ra 10 imm3

Assembly:

XORI Rd, Ra, imm

Purpose:

To perform bitwise XOR between a 16-bit integer in a register and a constant.

Restrictions:

None.

Operation:

opA ← mem[W+Ra]

if (has ext13)
then opB ← {ext13, imm3}

else opB ← decode imm al(imm3)

res ← opA xor opB
mem[W+Rd] ← res

Z ← res[15:0] = 0

S ← res[15]

C ← UNDEFINED
V ← UNDEFINED

89

5 List of Assembly Directives

TBD

90

6 Function Calling Sequence

TBD

91

	Table of Contents
	Introduction
	Guide to Instruction Set
	Operation Syntax
	Registers

	Quick Reference
	ALU Instructions
	Data Transfer Instructions
	Control Transfer Instructions

	List of Instructions
	ADC (Add Register with Carry)
	ADCI (Add Immediate with Carry)
	ADD (Add Register)
	ADDI (Add Immediate)
	ADJW (Adjust Window Address)
	AND (Bitwise AND with Register)
	ANDI (Bitwise AND with Immediate)
	BC (Branch if Carry)
	BC0 (Branch if Carry is 0)
	BC1 (Branch if Carry is 1)
	BEQ (Branch if Equal)
	BGES (Branch if Greater or Equal, Signed)
	BGEU (Branch if Greater or Equal, Unsigned)
	BGTS (Branch if Greater Than, Signed)
	BGTU (Branch if Greater Than, Unsigned)
	BLES (Branch if Less or Equal, Signed)
	BLEU (Branch if Less or Equal, Unsigned)
	BLTS (Branch if Less Than, Signed)
	BLTU (Branch if Less Than, Unsigned)
	BNC (Branch if Not Carry)
	BNE (Branch if Not Equal)
	BNS (Branch if Not Sign)
	BNV (Branch if Not Overflow)
	BNZ (Branch if Not Zero)
	BS (Branch if Sign)
	BS0 (Branch if Sign is 0)
	BS1 (Branch if Sign is 1)
	BV (Branch if Overflow)
	BV0 (Branch if Overflow is 0)
	BV1 (Branch if Overflow is 1)
	BZ (Branch if Zero)
	BZ0 (Branch if Zero is 0)
	BZ1 (Branch if Zero is 1)
	CMP (Compare to Register)
	CMPI (Compare to Immediate)
	EXTI (Extend Immediate)
	J (Jump)
	JAL (Jump and Link)
	JR (Jump to Register)
	JRAL (Jump to Register and Link)
	JST (Jump through Switch Table)
	JVT (Jump through Virtual Table)
	LD (Load)
	LDR (Load PC-relative)
	LDW (Adjust and Load Window Address)
	LDX (Load External)
	LDXA (Load External Absolute)
	MOV (Move)
	MOVI (Move Immediate)
	MOVR (Move PC-relative Address)
	NOP (No Operation)
	NOT (Logical NOT)
	OR (Bitwise OR with Register)
	ORI (Bitwise OR with Immediate)
	ROL (Rotate Left)
	ROLI (Rotate Left Immediate)
	RORI (Rotate Right Immediate)
	SBC (Subtract Register with Carry)
	SBCI (Subtract Immediate with Carry)
	SLL (Shift Left Logical)
	SLLI (Shift Left Logical Immediate)
	SRA (Shift Right Arithmetical)
	SRAI (Shift Right Arithmetical Immediate)
	SRL (Shift Right Logical)
	SRLI (Shift Right Logical Immediate)
	ST (Store)
	STR (Store PC-relative)
	STW (Store to Window Address)
	STX (Store External)
	STXA (Store External Absolute)
	SUB (Subtract Register)
	SUBI (Subtract Immediate)
	XCHG (Exchange Registers)
	XCHW (Exchange Window Address)
	XOR (Bitwise XOR with Register)
	XORI (Bitwise XOR with Immediate)

	List of Assembly Directives
	Function Calling Sequence

